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SUMMARY

Singh and Gupta [2] have discussed a conditionally specified estimator of the
error variance in a three-way layout with random effects. In this paper optimal
level of significance has been derived by minimising a suitably defined risk
function.
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Introduction

For a three-way layout in the random effects model, exact F-tests for
N testing the main effects are not available even under the normality
assumptions unless one of the first order interactions is zero. Let V;, Va,
V, be the mean squares based on n,, n,, ng, d.f. respectively correspond-
ing to the interactions ABC, AC and AB and let E(Vs) = ¢%, (i = 1, 2, 3).
If 6%5 > 0 and o%¢ > 0. Scheffe [1] suggests the use of Va= ¥V, +
V, — ¥V, as an error variance, which, though unbiased gives an approxi-
mate F-test for testing H, : 6% = 0 against H; : 6% > 0. Singh and Gupta
[2] used a preliminary test of significance (PTS) to test the hypothesis
H, : ¢%p = 0 against H,: 6%, > 0 and suggest the following conditional-
ly specified procedure to estimate the error variance to be used in testing
of H,.
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where B = F(ng, n,3 «y) is the upper 100 «% point of the F-distribution
with n, n; d.f. Singh et al. also derived expression for bias and mean
square error of ¥ and on the basis of an empirical study recommended
the use of g = 1.

In an effort to choose optimal significance level of PTS, Toyoda and
Wallace [3] discussed the optimal significance points in PTS for the esti-
mator in the linear normal regression model and pooling of two variances
respectively. The object of the present paper is to investigate the optimal
value of § by minimising a suitably defined risk function for the above
conditionally specified procedure.

From Singh et al. the mse of the estimator ¥ as a fraction of of is
given by
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when § = 0, i.e. we never pool the mean squares, then we have

MSE (Vo) _ 2 4 20 | 264
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and when B — o0, i.e. we always pool the estimators, we have
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2. Optimality Criterion

Assuming 0,y = 6;; — 6, MSE (V4)/o} and MSE (V,)/o} always have
two intersections with respect to 6 for any values of P and degrees of
freedom, n, and n,, provided that n; — 2 7= 0. The roots are

6, = [n; — ”3“/(2”3 =+ 2n; — 8)[nny]f(n; — 2)

and

0y = [ng +- nsw/ Cny + 20, — Dlnns)i(ny — 2)
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It is easily shown that there are two cases : Ho0<h,<1,1< 92; and
(i)0<6, < 1,6, <0. In any case there exists one interaction whose

root is 8, € (0, 1) MSE (V)/s4 depend on two parameters, namely $ and 0,
for a given set of degrees of freedom.

MSE(Va4)/e}, if0<<0 <0,
MSE(V,)[at, if 0, <08<1

First we define the efficiency of the estimator with respect to the always-
pool and never pool estimators expressed as a fraction of ot as

Min [MSE(V.4), MSE(V3)] — MSE(V)

The decision criterion for choosing B is to maximise the efficiency over
the whole range of 0; i.e.

Min [MSE(Va)/at, MSE(V,/o4)] = {

1
ng G = Méxx OJ {Min [MSE(V.4), MSE(V3)] — MSE(V)} ds

Note that this is equivalent to maximizing the average efficiency provid-
ed that the prior distribution of 0 is diffused. G(B) can be written as

6 1

G() = 6fl [MSE(V4) — MSE(V)] d, + ef [MSE(V,) — MSE(¥)ld,
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where .

P = (n;B)[(m6 + nyB),
a=1—2n,¢c,=1—2/nandc, = 1 + 2/n,.

Evaluating the integrals and simplyfying we get
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where

- b 142
k 7 and ¢, =1+ "1

Differentiating and simplyfying the equation

0G(R) _
® 0

we find that the value of 32 G(B)/op? at B = 1 is positive.
This shows that B = 1 is the optimal significance level.
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